World’s most advanced Baseband IP platform for Mobile Broadband 5G

PentaG2-Max™ is industry's most comprehensive IP Platform capable of meeting the extreme performance, low latency, and strict power budget for 3GPP 5G UE broadband eMBB and URLLC devices

Key Benefits

- Fully configurable IP platform for 5G NR and legacy 4G multi-mode RAT, targeting both Sub-6 and mmWave
- Scalable and customizable heterogeneous compute platform, with optimal HW/SW partitioning using a set of vector and scalar DSPs, co-processors and HW accelerators for achieving customer power and performance target
- Complete inline acceleration of all major processing chains for both downlink and uplink
- Optimized HW accelerators for FFT, Equalization, Bit/Symbol modulation and demodulation, MLD, and FEC
- Leveraging industry proven CEVA-XC4500 vector baseband DSP with 5G ISA extensions
- Reference end-to-end SW Implementation of major processing chains, Including PDSHC, PDCCH, PUSCH
- Comprehensive System-C SoC simulator, modeling all platform components, demonstrating major processing chains, allowing fast prototyping, proof of concept and solution dimensioning
- Second generation of PentaG architecture, reducing TTM, risk, effort and cost for new SoC development

Applications and use-cases

- 5G-NR & LTE UE devices
 - Handsets and Cellular baseband
 - Notebook datacard
 - FWA (Fixed Wireless Access) and CPE
 - XR & Headsets
 - Mission Critical
 - C-V2X (Cellular V2X)
 - Repeaters and IAB

PentaG2 deliverables

- 5G PHY Chains
- 5G SW Modules
- FreeRTOS
- HAL Drivers
- DSP Libraries
- PentaG2 Hardware
The Key Aspects of PentaG2-Max

- **Enhanced CEVA-XC4500 DSP with 5G ISA Extensions**: Field-proven DSP with new 5G ISA extensions specifically designed to accelerate key functions in the modem. Customer extendable using CEVA-Xtend.

- **CEVA-BX2 scalar DSPs**: Multiple CEVA-BX2 cores designed to address high performance and ultra-low latency demands of 5G PHY control.

- **Vector MAC Unit (VMU) Co-Processor**: 64 MAC co-processor designed to handle advanced channel estimation measurements and schemes in multiple channels.

- **TCEs and Accelerators**: A set of HW accelerators, including FEC encoders/decoders, FFTs, MLD (LTE), etc.

- **NNCP AI Processor**: Designed to handle advanced beamforming techniques and link adaptation scenarios using neural networks.

- **System-level Simulation**: An integrated C-level simulation environment that allows system engineers, architects and SW developers to model, profile and debug at cycle-accurate system level.

- **SW libraries and chains**: A rich set of DSP, Comm and 5G libraries, as well as complete reference chains (e.g. PDCCH receiver).