Introducing CEVA-XC16

Non-NDA

www.ceva-dsp.com

Copyright © 2020 CEVA, Inc.
Corporate Introduction

Licensing IP since 1991
Powering ~1bn devices annually

NASDAQ:CEVA

Strong, profitable
~$150m cash, no debt

>380 employees

R&D centers
Israel, France, U.S. & U.K.

Global Reach Through Local Presence;
All direct CEVA employees
Our Technologies

Cellular
5G DSP-based platforms for smartphones, RAN and cellular IoT

Powered by

IoT Connectivity
Comprehensive platforms for Bluetooth and Wi-Fi

Camera sensors
DSPs for computer vision & imaging, AI processors & inferencing software (CDNN)

IMU sensors
Software & algorithms Sensors fusion, management, activity detectors

Microphone sensors
Audio DSPs, voice algorithms, speech recognition, audio AI

Wireless Connectivity

Smart Sensing
>1 Billion CEVA-powered Devices Annually

U.S. Flagship Smartphone

SAMSUNG LG Xiaomi

table

Virgin

fitbit Google Oppo Phonak JBL Creative Xiaomi Reolink Samsung
Introducing Gen4 CEVA-XC and CEVA-XC16
Introducing Gen4 CEVA-XC Architecture

The World’s Most Powerful DSP Architecture

► Much more than a DSP core – a complete computing platform

► Innovative multithread and multicore architecture with dynamic vector computing resource allocation

► New and enhanced micro-architecture reaching 1.8 GHz @7nm

► Scalable to address a wide range of applications
 ▶ 5G intelligent RAN, 5G endpoints, High-end Wi-Fi AP, Massive AI, Radar and Lidar

2.5X Performance*
1.5X Performance / Area*
Multi thread
1.8 GHz

*Versus previous CEVA-XC
The CEVA-XC16 Multicore DSP

Cutting Edge 5G Processor for Advanced gNB Architecture

► First DSP processor based on Gen4 CEVA-XC Architecture
► Best in class DSP enabling and meeting the extreme performance requirements of next generation 5G NR architectures
► Designed leveraging our unique expertise in DSP and from close partnership with world-leading wireless vendors
► Scalable multicore / multithread architecture to address a wide range of applications
 ▶ Cloud RAN, macro cells, DU acceleration, Open RAN, small cells, BBU pooling, massive MIMO RRUs, FWA, 802.11ax Wi-Fi AP

1,600 GOPS
256 MAC
1.8GHz
CEVA-XC Vector DSP Roadmap
A strong foundation for the RAN and UE markets

256-MAC Communication Processor 5G Phase-II
NR Rel. 16/ Wi-Fi 11ax 8x8 / AI processing – RAN

128-MAC Communication Processor 5G Phase-I
NR Rel. 15/ LTE-A Pro / WiFi11ax 4x4 – RAN

64-MAC Communication Processor
5G – RAN & UE, Radar

32-MAC Communication Processor
4G/3G/2G – RAN & UE
5G NR Phase II - The Need for Flexible and Powerful SDR Platform

The ever-increasing need for higher data rates and numerous operating modes calls for a scalable and flexible architecture that can support:

1. **Massive Processing & Aggregation**
 - Massive BBU aggregation and pooling
 - Mix of carriers/bands of different width in both sub-6 and mmWave, multi-RAT supporting 5G NR & LTE
 - Massive MIMO and advanced beamforming

2. **Various Network Topologies**
 - From D-RAN to C-RAN to V-RAN
 - Emerging OpenRAN based architectures
 - DU Acceleration
 - Massive MIMO RRUs
 - In-building, Small-cells, private networks and verticals

3. **Multi User and Multi Computing Tasks**
 - Multi User processing supporting fine user allocations & massive single user resources
 - Fine slot allocations and short latencies for uRLLC and mission critical use cases
 - Multi node support with network slicing supporting Industry 4.0 and eHealth applications

4. **5G Standard and Network Evolution**
 - 3GPP Release 15 now being deployed
 - Phase II Release 16 and 17 expected this and next year
 - Hardwired solution will not do. Need a robust SDR platform serving future RAN needs throughout the decade
CEVA-XC16 Architecture
A New Architecture for the Debut of the 5G NR Decade

► CEVA-XC16 was designed specifically to address immense 5G NR baseband processing challenges
 ▶ Design inputs from leading Tier 1 OEMs
► Looking forward for C-RAN/D-RAN deployments
► Targeted for both DU side for BBU pooling aggregation, or RRU side for large MIMO dimensions and carrier aggregation
► Combination of 256-MAC flexible vector unit and unprecedented DSP clock speeds makes it the #1 baseband crunching machine
► Dynamic support of mass multi-user and large single user allocations ➔ multi core/thread

CEVA-XC16 - Multithreading for Multi Challenges
CEVA-XC16 Architecture Highlights

- Based on Gen4 CEVA-XC Architecture
- Increased length pipeline and physical design support to achieve 1.8GHz @ 7nm
- Quad vector processor units supporting up to 256 MACs per cycle
- Dual scalar processors for true multithreading
- Dynamic allocation of vector units to scalar processors:
 - QV mode: 4 vector units assigned to SP-0, SP-1 functions as scalar only
 - DV mode: 2 vector units assigned to each of SP-0, SP-1
- New optimized ISA for accelerating key functions
 - Dedicated FFT and symmetric FIR ISA
 - x2 improvement in Complex FIR and Matrix Multiplication (vs. XC12)
- 1.5 Performance/Area increase over CEVA-XC4500 and CEVA-XC12
 - Translates to 35% area savings for a large cluster of cores (typical for base-station silicon)
CEVA-XC16 Architecture Diagram
Dynamic Multicore

- Gen4 CEVA-XC Dynamic VCU allocation
- Highly efficient use of precious Vector Unit resources for enhanced MAC utilization
- Mode 1: 1xQV (Quad Vector)
 - All VCUs assigned to SP-0
 - SP-1 runs in parallel as controller
 - Can act as PHY controller and control external HW accelerators
- Mode 2: 2xDV (Dual Vector)
 - SP-0 and SP-1 are assigned two VCUs each
 - Symmetric processing flows
- Fast run time mode switching (few cycles)
Multithreaded Scalar Control Architecture

- CEVA-XC16 integrates Dual CEVA-BX scalar processors, CEVA’s latest generation common scalar architecture
- Compiler friendly architecture with a large common register file, full ISA predication and native support for all C types
- LLVM based compiler
- Second generation dynamic branch prediction (BTB)
 - Simple loop handling with zero-latency loops
 - Integrated loop buffer
- Code size reduction features
 - Fine tuned encoding scheme
 - Code Symbol Table
 - Partial loop execution

30% Better Control Performance*

30% Code Size Reduction*
CEVA-XC16 is VEC-C compatible with CEVA-XC4500 & CEVA-XC12
 ▶ Legacy code can be compiled to and executed on XC16

Each CEVA-XC16 can execute simultaneously two CEVA-XC4500 threads!

Legacy one time code conversion
 ▶ Following this one time conversion legacy code can be continuously maintained for XC4500, XC12 and XC16
Summary
CEVA-XC16: Putting It All Together

- Dynamic Multithreading
- Dynamic Vector Unit Allocation
- Multi-core Interconnect
- 4-way L1 I$ w. HW prefetch
- AXI burst support
- QMAN/BMAN System Support
- XC4500/XC12 compatible VEC-C

Gen4 CEVA-XC Architecture

- High Performance DSP
- 256-MAC
- 20-bit Pseudo Floating Point
- High precision non-linear ISA
- 2048-bit Memory Bandwidth
- 256x256 Massive MIMO
- 1024 QAM Demod ISA

L1 PHY Control

- Dual Core Architecture
- Efficient and compact code size
- Dynamic Branch Prediction
- Low Latency RTOS support
- LLVM compiler support

Multi-User Multi-Gigabit Workloads

- 5G eMBB, uRLLC
- Cloud RAN and V-RAN
- Macro and Small Cell
- Massive MIMO
- Wi-Fi 6

High Performance DSP

- 256-MAC
- 20-bit Pseudo Floating Point
- High precision non-linear ISA
- 2048-bit Memory Bandwidth
- 256x256 Massive MIMO
- 1024 QAM Demod ISA
Thank You

www.ceva-dsp.com