

Introducing CEVA-XC16

www.ceva-dsp.com

Copyright © 2020 CEVA, Inc.

Corporate Introduction

Licensing IP since 1991 Powering ~1bn devices annually

NASDAQ:CEVA

Strong, profitable ~\$150m cash, no debt

>380 employees

R&D centers Israel, France, U.S. & U.K. <image>

ANTARCTIC

Global Reach Through Local Presence; All direct CEVA employees

BRAZII

ARGENTINA

PERU

south

AUSTRALI

Our Technologies

Wireless Connectivity

Smart Sensing

CEVA Proprietary Information

>1 Billion CEVA-powered Devices Annually

CEVA Proprietary Information

Introducing Gen4 CEVA-XC and CEVA-XC16

Introducing Gen4 CEVA-XC Architecture

The World's Most Powerful DSP Architecture

- Much more than a DSP core a complete computing platform
- Innovative multithread and multicore architecture with dynamic vector computing resource allocation
- New and enhanced micro-architecture reaching 1.8 GHz @7nm
- Scalable to address a wide range of applications
 - 5G intelligent RAN, 5G endpoints, High-end Wi-Fi AP, Massive AI, Radar and Lidar

The CEVA-XC16 Multicore DSP

Cutting Edge 5G Processor for Advanced gNB Architecture

- First DSP processor based on Gen4 CEVA-XC Architecture
- Best in class DSP enabling and meeting the extreme performance requirements of next generation 5G NR architectures
- Designed leveraging our unique expertise in DSP and from close partnership with world-leading wireless vendors
- Scalable multicore / multithread architecture to address a wide range of applications
 - Cloud RAN, macro cells, DU acceleration, Open RAN, small cells, BBU pooling, massive MIMO RRUs, FWA, 802.11ax Wi-Fi AP

CEVA Proprietary Information

5G NR Phase II - The Need for Flexible and Powerful SDR Platform

The ever-increasing need for higher data rates and numerous operating modes calls for a scalable and flexible architecture that can support:

Massive Processing & Aggregation

1.

2.

- Massive BBU aggregation and pooling
- Mix of carriers/bands of different width in both sub-6 and mmWave, multi-RAT supporting 5G NR & LTE
- Massive MIMO and advanced beamforming

Various Network Topologies

- From D-RAN to C-RAN to V-RAN
- Emerging OpenRAN based architectures
- DU Acceleration
- Massive MIMO RRUs
- In-building, Small-cells, private networks and verticals

Multi User and Multi Computing Tasks

- Multi User processing supporting fine user allocations & massive single user resources
- Fine slot allocations and short latencies for uRLLC and mission critical use cases
- Multi node support with network slicing supporting Industry 4.0 and eHealth applications
- 5G Standard and Network Evolution
- 3GPP Release 15 now being deployed
- Phase II Release 16 and 17 expected this and next year
- Hardwired solution will not do. Need a robust SDR platform serving future RAN needs throughout the decade

CEVA Proprietary Information

3.

4.

CEVA-XC16 Architecture

CEVA-XC16 - Multithreading for Multi Challenges

unprecedented DSP clock speeds makes it the #1 baseband crunching machine

Dynamic support of mass multi-user and large single user allocations
→ multi core/thread

A New Architecture for the Debut of the 5G NR Decade

- CEVA-XC16 was designed specifically to address immense 5G NR baseband processing challenges
 - Design inputs from leading Tier 1 OEMs
- Looking forward for C-RAN/D-RAN deployments
- Targeted for both DU side for BBU pooling aggregation, or RRU side for large MIMO dimensions and carrier aggregation

CEVA-XC16 Architecture Highlights

- Based on Gen4 CEVA-XC Architecture
- Increased length pipeline and physical design support to achieve 1.8GHz @ 7nm
- Quad vector processor units supporting up to 256 MACs per cycle
- Dual scalar processors for true multithreading
- Dynamic allocation of vector units to scalar processors:
 - QV mode: 4 vector units assigned to SP-0, SP-1 functions as scalar only
 - DV mode: 2 vector units assigned to each of SP-0, SP-1
- New optimized ISA for accelerating key functions
 - Dedicated FFT and symmetric FIR ISA
 - > x2 improvement in Complex FIR and Matrix Multiplication (vs. XC12)
- 1.5 Performance/Area increase over CEVA-XC4500 and CEVA-XC12
 - > Translates to 35% area savings for a large cluster of cores (typical for base-station silicon)

CEVA-XC16 Architecture Diagram

Dynamic Multicore

Gen4 CEVA-XC Dynamic VCU allocation

- Highly efficient use of precious Vector Unit resources for enhanced MAC utilization
- Mode 1: 1xQV (Quad Vector)
 - All VCUs assigned to SP-0
 - > SP-1 runs in parallel as controller
 - Can act as PHY controller and control external HW accelerators

Mode 2: 2xDV (Dual Vector)

- > SP-0 and SP-1 are assigned two VCUs each
- > Symmetric processing flows
- Fast run time mode switching (few cycles)

1xQV Mode

2xDV Mode

Multithreaded Scalar Control Architecture

- CEVA-XC16 integrates Dual CEVA-BX scalar processors, CEVA's latest generation common scalar architecture
- Compiler friendly architecture with a large common register file, full ISA predication and native support for all C types
- LLVM based compiler
- Second generation dynamic branch prediction (BTB)
 - > Simple loop handling with zero-latency loops
 - Integrated loop buffer
 - Code size reduction features
 - Fine tuned encoding scheme
 - Code Symbol Table
 - Partial loop execution

30%

Better Control
Performance*

30%

Code Size

Reduction

SW Migration Path to CEVA-XC16

- CEVA-XC16 is VEC-C compatible with CEVA-XC4500 & CEVA-XC12
 - Legacy code can be compiled to and executed on XC16
- Each CEVA-XC16 can execute simultaneously two CEVA-XC4500 threads !
- Legacy <u>one time</u> code conversion
 - Following this one time conversion legacy code can be continuously maintained for XC4500, XC12 and XC16

Summary

CEVA-XC16: Putting It All Together

Thank You

www.ceva-dsp.com

Copyright © 2020 CEVA, Inc. and/or its subsidiaries. All rights reserved. All specifications are subject to change without notice.