

www.ceva-dsp.com

Cellular IoT for The Massive Internet of Things

Introducing the CEVA-X1

Lightweight, multi-purpose, single-core processor for cellular IoT

- Derived from the NEW CEVA-X Architecture Framework
- Extended Instruction Set Architecture (ISA) combining DSP+CPU processing
 - Eliminates need for separate CPU
- Addresses severe size, power and cost limitations for cellular IoT devices
- Comes with dedicated Cat-NB1 instructions to vastly improve performance

DSP+CPU

30% Reduced Power

Multi Mode

Introducing the CEVA-X1 (cont'd)

Also serves as processing hub for other closely-related IoT technologies

Connectivity

Short and long range wireless

Positioning

GNSS and indoor positioning

Sensing

Sensor-fusion using motion, sound and ambient sensing

Voice

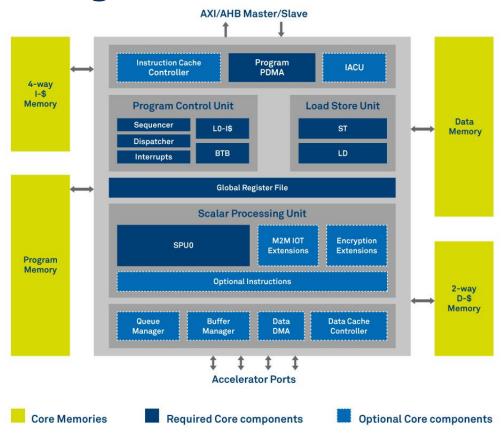
IoT related voice activation and narrowband voice communication

The Three Pillars of CEVA-X1

- Powerful DSP Processing
 - 4-way VLIW Architecture
 - ▶ 32-bit SIMD operations
 - ▶ 64-bit memory bandwidth
 - 2x 16x16 or 1x 32x32 MAC
 - ► IEEE Single-Precision Floating Point

- Efficient Controller Capabilities
- CoreMark/MHz: 3.3
 - On par with ARM Cortex-M4
- Compact code size
- ► Full RTOS support
- Ultra-fast context switch
- Comprehensive Control code ISA:
 - Zero latency
 - Byte support
- Dynamic and static branch prediction

- Advanced System Control
- CEVA Connect
 - Offload the processor with control and data plane hardware
 - Automatic data traffic management
 - for data flow between PHY and HWA
 - Dedicated interfaces to connect multiple HW accelerators
- Supports both AHB and AXI interconnect



Effectively combines strong and native DSP capabilities with advanced real-time Controller attributes

CEVA-X1 Architecture Diagram

Features	Configurations
Pipeline	10 stage
VLIW	4 way
SIMD [bit]	32
Scalar Units	1
MAC [16x16-bit]	2
MAC [32x32-bit]	1
Data Memory width [bit]	64 LD + 64 ST
SP Floating-Point	Optional
Dynamic Branch Prediction	Optional
Data Cache	Optional
Instruction Cache	Optional
CEVA-Connect	Optional

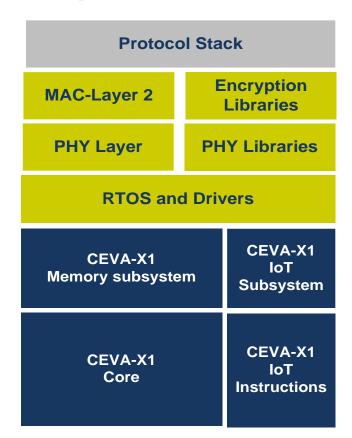
Dedicated Cat-NB1 Instructions

CEVA

- ▶ Detailed analysis of the Cat-NB1 standard and profiling of Baseband and Layer 2 (MAC, PDCP, RLC) on CEVA-X1
- Low data-rate cellular IoT standards are better addressed with dedicated instructions rather than HW accelerators external to the core
 - Baseband: Viterbi, Turbo encoder
 - Layer 2: Encryption
- CEVA-X1 Power Savings Unit (PSU) supports LTE Cat-M1 and Cat-NB1 PSM and eDRX modes to reduce power consumption further during idle and sleep time

Reduces the power consumption of the Cat-NB1 modem, excluding RF, by a further 30%.

CEVA-X1 HW and SW Components



► SW components

- RTOS and Drivers
- Cat-NB1 and Cat-M1 PHY Libraries
- ► Encryption Libraries
- MACs & Protocol Stacks
 - From CEVA & Partners

► HW components

- Cat-M1 and Cat-NB1 instructions
 - Baseband and Encryption
- ▶ IoT subsystem
 - Standard specific HW accelerators
 - e.g. Cat-M1 Turbo decoder
 - Peripherals and interfaces

Smart Watch Multi-mode Use Case

Wearalone Smartwatch

- Samsung Gear S3
 - Your Smartphone is no longer necessary!

WiFi 802.11n

Bluetooth 4.1

GPS

Voice

Cat-M1

Sensors

Multi-mode Use Case

- True concurrent multi-mode is required for
 - ► Communication: LTE Cat-M1, Wi-Fi, BLE
 - Only one will run at a given time
 - ▶ IoT: GNSS, Sensors, Voice codec & trigger
 - May all run at the same time
 - Cat-M1 and GNSS don't have to run at the same time
 - They are often idle and can time share Processor workload

A single CEVA-X1 can handle all above workloads concurrently, running everything in software

CEVA-X1 Putting it all together

- Coremark/MHz: 3.3
- Dynamic Branch Prediction
- ► Full RTOS Support
- Ultra Fast Context Switch

DSP+CPU in a single Core

Multipurpose processor

- Smart Home
- Asset Trackers
- Smart City, Smart Plants
- Smart Farming
- Wearables, eHealth

Standard Specific Instructions

Standard Specific Accelerators HW and SW

Optimized SW PHY Libraries

MACs and Protocol stacks

Cellular IoT
Standard Specific
HW and SW

Multi-mode ideal for IoT

- Wi-Fi, Bluetooth, BLE
- Zigbee / Thread
- SNSS: GPS, Beidou, Glonass
- Indoor positioning: beacons
- Sensors
- Vocoder, voice activation

CEVA